Throughout Stellar Evolution
Monday 26
Session 1 - Magnetized stellar formation
Chair: Corinne Charbonnel
› 14:45 - 15:05 (20min)
3D YSO accretion shock simulations: a study of the magnetic, chromospheric and stochastic flow effects and their observational relevance
Titos Matsakos  1, 2@  , Jean-Pierre Chièze  2, 1  , Chantal Stehlé  3@  , Matthias González  4  , Laurent Ibgui  5  , Lionel De Sá  2, 5  , Thierry Lanz  6  , Salvatore Orlando  7  , Rosaria Bonito  7, 8  , Costanza Argiroffi  9, 7@  , Fabio Reale  7, 8  , Giovanni Peres  8, 7  
1 : CEA, IRAMIS, Service Photons, Atomes et Molécules
CEA
2 : Laboratoire AIM, CEA/DSM - CNRS - Université Paris Diderot, IRFU/Service d'Astrophysique, CEA Saclay
CEA
3 : Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique  (LERMA)  -  Website
Ecole Normale Supérieure de Paris - ENS Paris, INSU, CNRS : UMR8112, Université Pierre et Marie Curie - Paris VI, Université de Cergy Pontoise, Observatoire de Paris
Meudon -  France
4 : Université Paris Diderot, Sorbonne Paris Cité, AIM, UMR 7158, CEA, CNRS
Université Paris Diderot - Paris 7
5 : LERMA, Observatoire de Paris, Université Pierre et Marie Curie and CNRS
Observatoire de Paris
6 : Laboratoire Lagrange, Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur
Observatoire de la Cote d'Azur
7 : INAF - Osservatorio Astronomico di Palermo
8 : Dipartimento di Fisica e Chimica, Università degli Studi di Palermo
9 : Dip. di Fisica e Chimica, Universita' di Palermo
Piazza del Parlamento 1, 90134 Palermo, Italy -  Italy

The structure and dynamics of young stellar object (YSO) accretion shocks depend strongly on the local magnetic field strength and configuration, as well as on the radiative transfer effects responsible for the energy losses. We present the first 3D YSO shock simulations of the interior of the stream, assuming a uniform background magnetic field, a clumpy infalling gas, and an acoustic energy flux flowing at the base of the chromosphere. We study the dynamical evolution and the post-shock structure as a function of the plasma-beta (thermal pressure over magnetic pressure). We find that a strong magnetic field (~hundreds of Gauss) leads to the formation of fibrils in the shocked gas due to the plasma confinement within flux tubes. The corresponding emission is smooth and fully distinguishable from the case of a weak magnetic field (~tenths of Gauss) where the hot slab demonstrates chaotic motion and oscillates periodically. We post-process our results with the code IRIS and discuss the observational relevance of the simulations to observed YSOs. The work is supported by French ANR, under grant 08-BLAN-0263-07.



  • Video
Online user: 1